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Abstract

The transient laminar compressible boundary layer over a circular cone at an angle of attack near a plane of sym-

metry in hypersonic flow has been investigated. The case of the boundary layer near the windward and leeward planes

has been considered. The effect of suction is included in the analysis which plays an important role in obtaining unique

solution. We have examined the situation where the flow is steady at time t = 0 and at time t > 0, the total enthalpy at

the wall is suddenly increased and subsequently maintained at that value. This imports unsteadiness in the flow field.

The effects of the variable fluid properties, non-unity Prandtl number and viscous dissipation are considered. By suit-

able transformations, the coupled nonlinear parabolic partial differential equations with three independent variables

governing the flow have been reduced to partial differential equations with two independent variables. The resulting

partial differential equations have been solved by using an implicit finite-difference scheme in combination with the

quasilinearization technique. Computations have been carried out from the initial steady state to the final steady state.

It is found that in a small time interval immediately after the start of the impulsive motion, the direction of the heat

transfer changes. The surface shear stresses in the streamwise and cross-wise directions and the surface heat transfer,

in general, increase with time and attain final steady state values rather quickly (i.e., spin-up time is small). The total

enthalpy at the wall strongly affects the surface shear stresses in the streamwise and cross-flow directions and the surface

heat transfer, the suction strongly affects the surface shear stress in the streamwise direction and the surface heat trans-

fer, and the cross-flow parameter strongly affects only the cross-flow surface shear stress.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The transient three-dimensional laminar boundary

layers in supersonic or hypersonic flow over a body is

found in many important and interesting applications

in several fields such as entry and re-entry space vehicles,

accelerated or decelerated rockets and missiles, wings of
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supersonic aircraft. The unsteady viscous effects are

found to play an important role in the stability of space

vehicles and missiles. In order to predict frictional drag

and the rate of heat transfer on the surface of the body

for the above problems, the transient laminar compress-

ible three-dimensional boundary layer equations govern-

ing the hypersonic or supersonic flow with four

independent variables (three space variables and a time

variable) have to be solved. Therefore, many research

workers have considered similarity solutions while

studying the three-dimensional boundary layer flows.
ed.
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Nomenclature

a velocity of sound, m s�1

A dimensionless suction parameter =

�ð3=2Þ1=2½ðqwÞw=ðquÞe�Re1=2x
cp constant pressure specific heat, J kg�1 K

cv constant volume specific heat, J kg�1 K

Ec viscous dissipation parameter = u2e=2He

f 0 dimensionless velocity component along

streamwise direction = u/ue
g dimensionless total enthalpy = H/He

h specific enthalpy, J kg�1

H total enthalpy, J kg�1

k fluid thermal conductivity, W m�1 K

Me Mach number at the edge of the boundary

layer = V/a

N product of density–viscosity ratio = ql/(ql)e
p static pressure, Pa

p0 static pressure when h = 0, Pa

p2 denotes the curvature of the pressure distri-

bution along the plane of symmetry, Pa

Pr Prandtl number = lecp/k
r cylindrical radius of the cone, m

R dimensionless function of dimensionless

time t* = 1 + �t*2

Rex local Reynolds number = uex/me
s 0 dimensionless cross-flow velocity = v/ve
t time, s

t* dimensionless time = (3/2)(ue/x)t

u, v, w velocity components along x, h and z direc-

tions, respectively, m s�1

V fluid velocity in the inviscid flow, m s�1

x distance along a generator of the cone from

apex, m

z distance normal to the surface, m

Greek symbols

a dimensionless cross-flow parameter = ½2nve=
ðqeleu2er3Þ�

a0 angle of incidence of the cone

b dimensionless parameter associated with the

three-dimensional nature of the flow = (2n/
vex)d(vex)/dn

c specific heat ratio = cp/cv (1.4 for air)

Dg, Dt* dimensionless step sizes in and g and t*

directions, respectively

� dimensionless constant

g transformed coordinate normal to the sur-

face = ð3=2Þ1=2ðqeue=lexÞ1=2
R g
0
ðq=qeÞdz

h circumferential angle measured from the

plane of symmetry

hc semi-vertical angle of the cone

l viscosity coefficient, kg m�1 s�1

m kinematic viscosity, m2 s�1

n transformed streamwise coordinate =

3�1 qeleueðsin hcÞ2x3
q mass density, kg m�3

x index in the power-law variation of viscosity

coefficient

Subscripts

e condition at the edge of the boundary layer

i initial condition

w wall condition

Superscript
0 prime denotes derivative with respect to g
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Recently, Cousteix [1] and Betters et al. [2] have pre-

sented excellent reviews of the unsteady boundary

layers. The steady compressible three-dimensional stag-

nation point boundary layers was investigated by Libby

[3] and the corresponding unsteady case was considered

by Kumari and Nath [4]. The steady laminar boundary

layers over an infinite yawed circular cylinder in a

supersonic flow was studied by Reshotko and Beckwith

[5], whereas the corresponding unsteady case was

investigated by Sau and Nath [6]. Dwyer [7] reported

certain aspects of the steady three-dimensional bound-

ary layers.

The boundary layer flow over a sharp cone near a

plane of symmetry is a three-dimensional flow with pres-

sure gradient, either favourable or adverse, and either

inflow into or outflow from the plane. Such a study

could be useful in the design of missiles and space
vehicles. Moore [8,9] and Reshotko [10] investigated

the boundary layer flow on a cone near the windward

plane of symmetry, whereas Murdock [11], Roux [12],

Wu and Libby [13] and Rubin et al. [14] have studied

both the windward and leeward sides. These studies

showed the existence of non-unique solutions in the

windward and leeward plane of symmetry. A detailed

study of three-dimensional compressible boundary layer

flow on a cone at an angle of attack was carried out by

Lin and Rubin [15]. Wortman [16] has studied the effect

of injection on the laminar boundary layer flows at

windward generators of sharp cones at angles of attack.

He included the effects of variable fluid properties, non-

unity Prandtl number and viscous dissipation in the gov-

erning equations and obtained self-similar solutions.

The above studies except [16] dealt with the self-sim-

ilar solutions of the steady flows with constant fluid
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Fig. 1. Comparison of streamwise surface shear stress for the

steady flow. (f00(0)), when A = Ec = t* = � = 0, Pr = x = N = 1

with that of Wu and Libby [13].
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properties, unit Prandtl number and without viscous dis-

sipation. As mentioned earlier, the flow is likely to be

unsteady in most problems such as entry or re-entry

space vehicles which undergo deceleration, supersonic

aircrafts where the speed is suddenly changed and

rockets and missiles where the angle of incidence is

impulsively altered. In recent years, the unsteady com-

pressible boundary layer flow over two-dimensional

and axisymmetric bodies have been investigated by a

few research workers [17–19].

It is well known that suction plays an important role

in controlling the boundary layer thickness. The perfor-

mance criteria associated with satellites, space vehicles,

aircrafts etc. significantly depend on the growth of the

boundary layers. The boundary layer thickness can be

considerably reduced by applying suction on the surface

of the body.

This paper considers the unsteady laminar compress-

ible three-dimensional boundary layer flow over a cone

at an angle of attack near the windward and leeward

sides of the plane of symmetry. The effect of suction is

included in the analysis which enables us to obtain un-

ique solution of the problem. We have considered the

case where the flow is steady at time t = 0 and at time

t > 0, the wall temperature is impulsively increased. This

sudden increase in the wall temperature induces unstead-

iness in the flow field. The effects of the variable fluid

properties, non-unity Prandtl number and viscous dissi-

pation on the flow field are considered. The flow is

assumed to be axisymmetric. By suitable transforma-

tions, the unsteady compressible boundary layer equa-

tions with three independent variables have been

reduced to boundary layer equations with two indepen-

dent variables, The resulting system of equations has

been solved numerically using an implicit finite differ-

ence scheme in combination with the quasi-linearization

technique [20,21]. The computations have been carried

out from the initial steady state to the final steady state.

The initial steady state results in the absence of suction

have been compared with those of Wu and Libby [13]

and Wortman [16]. The present problem is the unsteady

counterpart of the problem considered by Wu and Libby

[13] and Wortman [16] and the results with suction may

be useful in reducing the drag on space vehicles, missiles

and aircraft.
2. Analysis

Inset of Fig. 1 shows the physical model and the

coordinate system (x,z, rh), where x is the distance along

a generator of the cone from the vertex, z is the distance

normal to the surface, r(x) is the cylindrical radius of the

cone, and h is the circumferential angle. The correspond-

ing velocity components are u, w and v. We consider

the transient laminar compressible three-dimensional
boundary layers governing the hypersonic flow over a

circular cone at an angle of incidence a0 near a plane

of symmetry. Both windward and leeward sides are con-

sidered in the analysis. We have considered the case

where the flow is steady at time t = 0 and at time t > 0,

the wall temperature is suddenly increased and subse-

quently the same wall temperature is maintained. This

impulsive change imports unsteadiness in the flow field.

Our aim is to study the temporal development of the

flow and temperature fields starting from the initial stea-

dy state to the final steady state. We have assumed var-

iable fluid properties and non-unity Prandtl number

(q / T�1, l / Tx, Pr 5 1, where q and l are the fluid

density and viscosity, respectively, x is the index in the

power-law variation of the viscosity and Pr is the Pra-

ndtl number). The viscous dissipation term, is included

in our analysis. We have taken the Prandtl number Pr

to be constant in the boundary layer, because in most

of the atmospheric flight problems its variation is small

[22]. We have also assumed that the fluid in the inviscid

flow is homentropic. Here h is the plane of symmetry

and we assume expansion for the velocity components

u, v and w, total enthalpy H and static pressure p appro-

priate to the plane of symmetry in terms of h (i.e., u, w,

H and p even functions and v odd function). We use

these expansions into the boundary layer equations for

conservation of mass, momentum (x-wise and h-wise
momentum) and energy and consider only zero- and

first-order terms in h and obtain the following system

of equations [13,23,24].

o

ot
ðqrÞ þ o

ox
ðqurÞ þ qvþ r

o

oz
ðqwÞ ¼ 0; ð1Þ
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ou
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þ w
ou
oz

� �
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ox
þ o

oz
l
ou
oz

� �
; ð2Þ
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þ w
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r
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oz
l
ov
oz

� �
; ð3Þ

q
oH
ot

þ u
oH
ox

þ w
oH
oz

� �

¼ op0
ot

þ o

oz
l
Pr

oH
oz

þ ð1� Pr�1Þlu ou
oz

� �
; ð4Þ

where

� op0
ox

¼ qe
oue
ot

þ ue
oue
ox

� �
;

� 2p2 ¼ qev
2
e þ qex sin hc

ove
ot

þ ue
ove
ox

� �
;

op0
ot

¼ qe
oHe

ot
þ ue

oHe

ox

� �
;

r ¼ x sin hc; H ¼ hþ 2�1u2:

ð5Þ

The initial conditions are given by

u ¼ ui; v ¼ vi; w ¼ wi; H ¼ Hi at t ¼ 0: ð6Þ

The boundary conditions are

u ¼ v ¼ 0; w ¼ w0; H ¼ Hwð1þ �Þ
at z ¼ 0; t > 0;

u ¼ ue; v ¼ ve; H ¼ He as z ! 1; t > 0: ð7Þ

Here v now denotes the velocity gradient in the direction

normal to the plane of symmetry and the actual velocity

either into (v < 0) or out of (v > 0) the plane of symmetry

is vh, whereas the cross-flow velocity is given by v/ve [13].

Since we have assumed that the fluid outside the bound-

ary layer region (inviscid flow region) is homentropic,He

is a constant in the inviscid flow region. Hence op0/

ot = 0. Also ue and ve are independent of time t which

imply that oue/ot = ove/ot = 0.

In order to reduce the number of independent vari-

ables from three to two as well as the number of equa-

tions from four to three, we apply the following

transformations to Eqs. (1)–(4)

g ¼ 3

2

qeue
lex

� �1=2 Z z

0

ðq=qeÞdz; n ¼ 3�1qeleueðsin hcÞ
2x3;

t� ¼ ð3=2Þðue=xÞt; uðx; z; tÞ ¼ uef 0ðg; t�Þ;
vðx; z; tÞ ¼ ves0ðg; t�Þ; Hðx; z; tÞ ¼ Hegðg; t�Þ;

a ¼ 2nve=ðqeleu
2
er

3Þ ¼ ð2ve=3ue sin hcÞ;
b ¼ ð2n=vexÞdðvexÞ=dn ¼ 2=3; Rex ¼ uex=me;

Ec ¼ u2e=2He ¼ 2�1ðc� 1ÞM2
e=½1þ 2�1ðc� 1ÞM2

e �;

f ð0; t�Þ ¼ A; A ¼ �ð3=2Þ1=2½ðqwÞw=ðquÞe�Re1=2x ;

qe=q ¼ h=he ¼ ðg � Ecf 02Þ=ð1� EcÞ;

l=le ¼ ðh=heÞx ¼ ½ðg � Ecf 02Þ=ð1� EcÞ�x;

N ¼ ql=qele ¼ ½ðg � Ecf 02Þ=ð1� EcÞ�x�1
: ð8Þ
We use the transformations given in (8) and find (qw)
from (1) and use it along with (8) in (2)–(4). Conse-

quently, we get the following semi-similar equations

ðNf 00Þ0 þ ðf þ asÞf 00 � of 0=ot� ¼ 0; ð9Þ

ðNs00Þ0 þ ðf þ asÞs00 þ aðqe=q� s02Þ
þ ð2=3Þðqe=q� f 0s0Þ � os0=ot� ¼ 0; ð10Þ

ðPr�1Ng0Þ0 þ ðf þ asÞg0 þ Ec½ð1� Pr�1ÞNf 0f 00�0

� og=ot� ¼ 0 ð11Þ

with boundary conditions

f ð0; t�Þ ¼ A; f 0ð0; t�Þ ¼ sð0; t�Þ ¼ s0ð0; t�Þ ¼ 0;

gð0; t�Þ ¼ gwð1þ �Þ;
f 0ð1; t�Þ ¼ s0ð1; t�Þ ¼ gð1; t�Þ ¼ 1: ð12Þ

The initial conditions given by the steady-state equa-

tions which can be obtained from (9)–(11) by putting

t* = � = of 0/ot* = os 0/ot* = og/ot* = 0 in them. The

steady state equations are

ðNf 00Þ0 þ ðf þ asÞf 00 ¼ 0; ð13Þ

ðNs00Þ0 þ ðf þ asÞs00 þ aðqe=q� s02Þ
þ ð2=3Þðqe=q� f 0s0Þ ¼ 0; ð14Þ

ðPr�1Ng0Þ0 þ ðf þ asÞg0 þ Ec½ð1� Pr�1ÞNf 0f 00�0 ¼ 0 ð15Þ

with boundary conditions

f ¼ A; f 0 ¼ s ¼ s0 ¼ 0; g ¼ gw at g ¼ 0;

f 0 ¼ s0 ¼ g ¼ 1 as g ! 1:
ð16Þ

It may be noted that the initial steady state equations

(13)–(15) under conditions (16) are identical to those of

Wortman [16] and for N = x = Pr = 1, Ec = A = 0 to

those of Wu and Libby [13].

It may be noted that non-unique solutions exist for

many important and interesting problems in fluid

dynamics which are governed by boundary layer or

Navier–Stokes equations [13,25–31]. However, in most

cases, the physical significance of multiple solutions is

uncertain. In these cases, the classical solutions have

been obtained by solving the two-point boundary value

problem numerically. For the second or multiple solu-

tions different sets of initial profiles and the edge of

the boundary layer (g1) are chosen. This procedure

yields non-unique solutions. When suction or magnetic

field or both are applied, the boundary layer becomes

thin and it is not possible to get two or more indepen-

dent sets of initial profiles which can yield two or more

independent solutions of the same problem satisfying all

the boundary conditions.

For the generalized vortex flow imposed over an infi-

nite disk, King and Lewellen [32] and Stewartson and
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Fig. 2. Comparison of cross-flow surface shear stress for the
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Troesch [33] have found that no solution exists for the

potential vortex flow in the absence of the magnetic

field, but it exists if the magnetic parameter M P 0.1.

Nanbu [34] has reported that the solution for the poten-

tial vortex flow in the absence of the magnetic field exists

when the suction parameter AP 1.74. Since suction or

magnetic field affects the existence of the solution, it is

interesting to examine the role of suction on the non-

uniqueness of the present problem. By increasing the

value of the suction parameter from 0–2 (nearly), it is

possible to show that only one solution is obtained

numerically. However, this is not a mathematical condi-

tion for the uniqueness of the solution. More theoretical

work is required to find the necessary and sufficient con-

ditions for the uniqueness of the solutions of the bound-

ary layer or Navier–Stokes equations [35]. This aspect

will be considered in future.

steady flow (s00(0)), when A = Ec = t* = � = 0, Pr = x = N = 1

with that of Wu and Libby [13].
3. Method of solution

Eqs. (9)–(11) under boundary conditions (12) and ini-

tial conditions (13)–(16) have been solved by an implicit

finite-difference scheme in combination with the quasi-

linearization technique [20,21]. First the non-linear

equations (9)–(11) are linearized by using the quasi-line-

arization technique [20]. The resulting linear partial dif-

ferential equations have been expressed in difference

form by means of central-difference scheme in g-direc-
tion and backward-difference scheme in t*-direction.

These equations are then reduced to a system of linear

algebraic equations with a block tri-diagonal structure

and are solved by using Varga�s algorithm [36]. The step

sizes in g- and t*-directions are chosen as Dg = 0.05 and

Dt* = 0.001 in the time interval 0 6 t* 6 0.1 and Dt* =
0.01 for t* > 0.1 and the edge of the boundary layer

g1 = 6 for A P 2. In our analysis, we have taken AP
2 to ensure unique solution. These values are taken after

carrying out the sensitivity analysis. A convergence crite-

rion based on the relative difference between the current

and the previous iterations is used. When this difference

becomes 10�5, the solution is assumed to have con-

verged and the iterative process is terminated.
4. Results and discussion

Eqs. (9)–(11) under boundary and initial conditions

(12)–(16) have been solved by using an implicit finite-dif-

ference scheme in combination with the quasi-lineariza-

tion technique as described earlier. In order to assess the

accuracy of our method, we have compared the surface

shear stresses in the streamwise and cross-flow directions

(f00(0), s00(0)) for t* = 0 (initial steady state), A = 0 (with-

out suction), Ec = 0 (without viscous dissipation),

Pr = 1, N = x = 1 (constant density–viscosity product)
with those of Wu and Libby [13] and found them in very

good agreement. The comparison is shown in Figs. 1

and 2. We have also compared the ratio of the surface

shear stresses and the heat transfer for the initial steady

case ðf 00ð0Þ=f 00
0 ð0Þ, s00ð0Þ=s000ð0Þ, g0ð0Þ=g00ð0ÞÞ when x =

0.5, gw = 0.1. A = 0, Ec = 0.5, Pr = 0.715 with those of

Wortman [16]. The results are found to be in very good

agreement. The maximum difference is found to be less

than 1%. It is evident from Figs. 1 and 2 that the surface

shear stresses (f00(0), s00(0)) for the steady-state case ob-

tained by us for A = 0 (without suction) as well as by

Wu and Libby [13] have two values in a certain range

of cross-flow parameter a and this range reduces as the

total enthalpy at the wall gw increases.

The temporal development of the total enthalpy and

velocity profiles (g(g, t*), f 0(g, t*), s 0(g, t*)) and their gra-

dients (g 0(g, t*), f00(g, t*), s00(g, t*)) for A = 2, x = 0.5,

Me = 20, gw = 0.5, � = 0.1, Pr = 0.7, c = 1.4, a = 0.5 has

been studied, but only the total enthalpy and its gradient

are shown in Fig. 3. The effect is found to be more pro-

nounced on the total enthalpy and its gradient and

shows some interesting results. In small interval of time

0 < t* < 0.01, the total enthalpy of the fluid near the wall

is less than that at the wall. The physical reason for this

behaviour is that at time t* = 0, the total enthalpy at the

wall gw (gw < 1) is less than that of the surrounding fluid.

At time t* > 0, the total enthalpy at the wall is suddenly

increased above that of the surrounding fluid near the

wall. Hence for a small time interval, the total enthalpy

of the fluid near the wall is less than that at the wall. In

this case, the total enthalpy profiles g(g, t*) have a point

of inflexion as evident from maximum in g 0(g, t*). On the

other hand, the velocity profiles in the streamwise direc-

tion f 0(g, t*) have no point of inflexion, but the velocity

profiles in the cross-flow direction s 0(g, t*) near the wall
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have velocity overshoot (i.e., the velocity of the fluid

near the wall exceeds that at the edge of the boundary

layer) as evident from the minimum in s00(g, t*). This

velocity overshoot occurs for all t* when the cross-flow

parameter a > 0 (i.e., in the windward plane of symme-

try). Since the perturbation in the total enthalpy at the

wall is taken as small (� = 0.1), the changes in the veloc-

ity and temperature profiles and their gradients are

small. If � is increased, these changes will become more

significant. Also, the surface shear stress increase with

time due to the impulsive increase in the total enthalpy

at the wall.

The effects of the total wall enthalpy gw on the tem-

poral development of the surface shear stresses in the

streamwise and cross-flow directions (f00(0, t*), s00(0, t*))

and the surface heat transfer (g 0(0, t*)) for A = 2,

x = a = 0.5, Me = 20, � = 0.1, Pr = 0.7, c = 1.4 are pre-

sented in Fig. 4. For a fixed time, the surface shear stres-

ses in the streamwise and cross-flow directions and the

surface heat transfer (f00(0, t*), s00(0, t*), g 0(0, t*)) strongly

depend on gw and they increase with it except g 0(0, t*)

which decreases. The reason for this trend can be ex-

plained as follows. For gases increase in gw implies

reduction in the density of the gas. This causes reduction

in momentum and thermal boundary layers. Conse-

quently, the surface shear stresses increase with gw, but

the heat transfer decreases due to the reduction in the to-

tal enthalpy gradient. The surface shear stresses in the

streamwise and cross-flow directions increase, respec-

tively, by about 78% and 136%, when gw increases from

0.25 to 0.75, but the heat transfer decreases by about

46%. For a given gw, they increase with time t*, however

the effect is more pronounced on the heat transfer

(g 0(0, t*)) than on the surface shear stresses, because step

increase in the total enthalpy at t* > 0 directly affects

the heat transfer. At time t* = 0, the heat transfer
g 0(0, t*) > 0 which implies that the heat is transferred

from the fluid to the wall. However at t* > 0, the total

enthalpy at the wall is increased and it becomes more

than that of the fluid near the wall for a small time inter-

val. Hence in that time interval, g 0(0, t*) < 0 indicating

that the heat is transferred from the wall to the fluid.

The shear stresses continuously increase with time and

no such phenomenon is observed.

The effects of suction (A) on the surface shear stress

in the streamwise direction and the surface heat transfer

(f00(0, t*), g 0(0, t*)) for x = a = gw = 0.5, Me = 20, � = 0.1,

Pr = 0.7, c = 1.4 are displayed in Fig. 5. Since the effect

of A on the cross-flow shear stress (s00(0, t*)) is found to

be very small, it is not shown in the figure. For a fixed

time, the surface shear stress in the streamwise direction

(f00(0, t*)) and the surface heat transfer (g 0(0, t*)) signifi-

cantly increase with A. For t* = 1, f00(0, t*) and g 0(0, t*)

increase by about 100% as A increases from 2 to 4.

The increase in suction causes thinner momentum and

thermal boundary layers. Therefore, the surface shear

stress in the streamwise direction and the surface heat

transfer increase with A.

The effects of the cross-flow parameter a on the sur-

face shear stress in the cross-flow direction (s00(0, t*)) for

A = 2, gw = x = 0.5, Me = 20, � = 0.1, Pr = 0.7, c = 1.4

are shown in Fig. 6. Since the effects of a on the stream-

wise surface shear stress (f00(0, t*)) and the heat transfer

(g 0(0, t*)) are comparatively small, it is not shown here.

For a fixed time t*, the cross-flow shear stress

(s00(0, t*)) increases with a. For t* = 1, it increases by

about 182% as a increases from �0.5 to 1.0. On the

other hand, the streamwise surface shear stress

(f00(0, t*)) and the surface heat transfer (g 0(0, t*)) increase

by about 6%. Since positive a acts like favourable
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pressure gradient and negative a acts like adverse pres-

sure gradient, its effect on the cross-flow shear stress is

more significant than on the streamwise shear stress

and the heat transfer.
5. Conclusions

One of the interesting results is that in a small time

interval after the start of the impulsive change in the to-

tal enthalpy, the direction of the heat transfers changes.

The surface shear stresses in the streamwise and cross-

flow directions and the heat transfer increase with time
and reach final steady state values rather quickly.

Appreciable changes take place only in a small time

interval after the impulsive increase in the total enthalpy.

For a fixed time, the total enthalpy at the wall signifi-

cantly increases the surface shear stresses in the stream-

wise and cross-flow directions, but the surface heat

transfer decreases. On the other hand, the suction in-

creases appreciably the surface shear stress in the

streamwise direction and the surface heat transfer,

whereas the cross-flow parameter increases significantly

only the cross-flow shear stress. The application of suc-

tion enables us to obtain unique solution.
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